Energetics of stress production in isolated cardiac trabeculae from the rat.
نویسندگان
چکیده
The heat liberated upon stress production in isolated cardiac muscle provides insights into the complex thermodynamic processes underlying mechanical contraction. To that end, we simultaneously measured the heat and stress (force per cross-sectional area) production of cardiac trabeculae from rats using a flow-through micromechanocalorimeter. In a flowing stream of O(2)-equilibrated Tyrode solution (∼22°C), the stress and heat production of actively contracting trabeculae were varied by 1) altering stimulus frequency (0.2-4 Hz) at optimal muscle length (L(o)), 2) reducing muscle length below L(o) at 0.2 and 2 Hz, and 3) changing extracellular Ca(2+) concentrations ([Ca(2+)](o); 1 and 2 mM). Linear regression lines were adequate to fit the active heat-stress data. The active heat-stress relationships were independent of stimulus frequency and muscle length but were dependent on [Ca(2+)](o), having greater intercepts at 2 mM [Ca(2+)](o) than at 1 mM [Ca(2+)](o) (3.5 and 2.0 kJ·m(-3)·twitch(-1), respectively). The slopes among the heat-stress relationships did not differ. At the highest experimental stimulus frequency, pronounced elevation of diastolic Ca(2+) resulted in incomplete twitch relaxation. The resulting increase of diastolic stress, which occurred with negligible metabolic energy expenditure, subsequently diminished due to the time-dependent loss of myofilament Ca(2+)-sensitivity.
منابع مشابه
A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.
Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isola...
متن کاملStreptozotocin-induced diabetes prolongs twitch duration without affecting the energetics of isolated ventricular trabeculae
BACKGROUND Diabetes induces numerous electrical, ionic and biochemical defects in the heart. A general feature of diabetic myocardium is its low rate of activity, commonly characterised by prolonged twitch duration. This diabetes-induced mechanical change, however, seems to have no effect on contractile performance (i.e., force production) at the tissue level. Hence, we hypothesise that diabete...
متن کاملRestoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic...
متن کاملReduced mechanical efficiency in left‐ventricular trabeculae of the spontaneously hypertensive rat
Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventr...
متن کاملEffects of L-Carnitine on Cardiac Apoptosis in Ischemic- Reperfused Isolated Rat Heart
Carnitine is a vital biologic substance for transporting fatty acids into myocytes. It also facilitates fatty acids β-oxidation for energy production. In this study, effects of L-carnitine (L-Car) on apoptosis in the ischemic isolated rat heart were investigated. Male Sprague-Dawley rats were divided into four groups and anesthetized by sodium pentobarbital. The heart was removed and mount...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 299 5 شماره
صفحات -
تاریخ انتشار 2010